Pandemonium

Abstract

Pandemonium is a machine learning-based framework that incorporates
various epidemiological models and data to assess respiratory infections
disease risks. The currently-used models and data are applied toward a
web-based app for individual risk evaluation of COVID-19 outcomes, to
help users optimize strategies for mitigating exposure.

e Pandemonium's framework combines
several components, including:

o Vaccine Effectiveness (VE) model
T m evaluates how vaccines impact
Siroct Downioad infection risk

m Currently using our own original

probabilistic VE model.
o Risk factor framework
m Risk factor organization,
aggregation, conversion.
o Macro model
m Main model
m Simulator of disease dynamics

Data Sources

Socrata

GitHub

model, to provide a more accurate

e The Micro Model focuses on assessing individual infection
risk, adjusting the risk based on symptom testing and
airborne transmission indoors. It uses personal data such as
age, vaccination status, and chronic health conditions, along
with a micro-mechanistic transmission model(s) (currently
Bazant and Bush, 2021) to evaluate indoor airborne
transmission. This data is then integrated with broader
epidemiological models, such as the macro-epidemiological

assessment of the risk of contracting COVID-19.
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histories.

e Uses probabilistic programming to simulate population-level disease dynamics using SEIRD models,
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APP Description
Users will be able to estimate the risk of infections
by entering COVID-related factors such as age, sex,

chronic condition, and vaccine and location

informed by risk factors and public health data.
parameters and intercompartmental flows can incorporate regional or

o SEIRD model

group-specific risk factors such as age, vaccinations data, and prevalences of chronic health

conditions.

e Models hierarchical geographic regions and demographic groups, including individuals.

e Uses coupling between region/groups via “coupling factors” to help simulate the effects from:
o Flow of people between region/groups
o The special movement of people between regions through time-varying “dynamic” coupling

and personalized
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Generalized Risk Factor Framework is one component within Pandemonium's broader framework
handling the storage, lookup, and processing of Risk and Protective Factors for users and models.
e Analyzed Factors: This module focuses on individual factors that influence the risk of infection,
hospitalization, or death, including age, comorbidities, vaccination status, gender, ethnicity,
location and pre-existing conditions.

— Demographics

Age: |34 | Sex: Home Location: |County: Rockland v| Race: |American Indian or Alaska Native v

Total Relative Risk

e The total relative risk compared Wi e frmaion you v givn v, e it ou eronl sk e o svere COVID 19 atcomes .37 e sl codion
to a standard baseline B et . e Ve 451 0 i e
will be calculated with the user’s
given information.
e Converts between various forms, e.qg.
o 0Odds Ratio
o Risk Ratio
o Hazard Ratio
e Computes Relative Risk vs. Group/Local

Population on-the-fly for Macro Model. e

1. Adapt Pandemonium to address future outbreaks of other vaccine-preventable diseases and emerging
infections (like Influenza, RSV, and Monkeypox).

2. Improve Vaccine Effectiveness model by refining current models and incorporating data on individual vaccine
responses, demographic information, and epidemiological trends to deliver more accurate risk assessments.

3. Develop and implement model of cases and/or active infections (wastewater model).

4. Scale the model globally through collaborations with researchers and public health organizations like the CDC
and WHO, focusing on endemic infectious diseases (e.g. Malaria and Tuberculosis).

5. Incorporate computational fluid dynamics (CFD) simulations to further refine our understanding of airborne
transmission in enclosed spaces.

6. Collaborate with the global research community and encourage wider adoption to improve emergency
preparedness once the model (1) transitions to an open-source status starting Q4 2024.

7. Expand accessibility by releasing a mobile version and optimize the web interface.
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Spacial Structure
Simplified lllustration

o Behavioral similarities between region/groups that affect disease transmission
e Frame shifting between population-scale and individual-level transmission allows for
o Inputted micro-events (i.e. indoor spreading) to affect the larger region
o Stochastic uncertainty of population-scale transmission to be better modelled
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Y, t,,t,: Time since last dose, lower & upper

e: Vaccine Effectiveness

Eff Type: Effectiveness Type
against different outcome

Eyrior+ TiMe between previous

vaccination & latest vaccination

r: exponential decay rate
Shaded circle: observed parameter

Clear circle: latent parameter

€model(t) — f(t§ €max tsmaxa Ty Efinal, ginitial)

5avg(t17 t2) —

t2
ftl €model dt

to —

2
5avg ~ N(Eobs - A5':study7 Usobs)

Eobs ~ 1 — LogNormal(log(l o ,Usobs) — 50

2
ACc:study ~ N(Oa Us,study)

; Other
| e
- max
| oo T Vacoins:
e N \
Dose #
I
ac Stagel.
€tinal
@ e || Vaccination?
Stage 2 initial
GIObal Latent
Model Model - @
Params Sublineage
OUTPUT 535;",‘3%? 0 Observed data -Input
A x #|of Unique Obs. Configurations,No
Stage 3 sy x # of Studies,Ns
Hyper-
I_D?,r-,a;,rzst' Inter-Study Variance '@ ‘@ Inter-Observational Variance

e Stage |: Together with sampled parameters, VE curve, average VE in a certain time interval
and distributions of them are calculated.

Ol Nonlinear Vaccine Effectiveness Model For each observation
ine , _ . .
Update " Eobs, 1.€. vaccine effectiveness data point,

e Stage ll: inferring latent global model parameters based on the lognormal distribution with
the hyperparameters from stage lll, use them and demographic information (Age) to
calculate the five parameters that could estimate the VE curve.

e Stage lll: inferring hyperparameters from the prior lognormal/uniform distribution.

Vaccine Effectiveness vs. Time
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Effectiveness Results

Estimated Personal Vaccine Effectiveness across Time
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Our VE model infers VE curve model parameters that are most likely to fit the observed data.
The VE model parameters can generate most-likely VE curves for observed & unobserved:

e Times
e Disease outcomes: severe, non-severe, hospitalization (observed only)

e Different vaccine combinations: vaccine manufacture, dosage number
Moreover, VE curve uncertainties are obtained from the parameter uncertainties.
Analysis:
We use both the method of MAP and MLE for estimation. MAP outperformed MLE by:
e Percentage of outliers (2.27% vs. 6.82%)
e Percentage of successfully estimated non-heterogenous vaccine (85.19% vs. 64.81%)
e Percentage of successfully estimated heterogenous vaccine (98.15% vs. 56.48%)
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